
Copyright is held by the author / owner(s).
SIGGRAPH 2012, Los Angeles, California, August 5 – 9, 2012.
ISBN 978-1-4503-1435-0/12/0008

Novel approaches for GPU Performance Analysis

Karthik Hariharakrishnan∗

ARM R© Ltd, Cambridge, UK

Keywords: timeline, performance, deferred rendering, embedded
GPU

1 Introduction

Most modern embedded GPU architectures use a concept called de-
ferred rendering - a rendering job submitted to the GPU gets sched-
uled at a future point in time. When a graphics application issues
a rendering API call(e.g. OpenGLES R© call), the graphics driver
running on the CPU, stores the state necessary for that call, but
doesn’t execute it on the GPU immediately. The CPU consumes
subsequent API calls to build a rendering job for the GPU. When
the application wants to display the result of rendering on a win-
dow(eg SwapBuffers), the CPU submits the constructed job to the
GPU. This architecture is especially suited for an embedded GPU
as it reduces communication and bandwidth between the CPU and
GPU. Once the job has been submitted to the GPU, the CPU is free
to work on preparing the next frame. It is important to ensure that
different processing units(CPU and GPU) are kept busy running in
parallel. An application that consumes a lot of time doing CPU
computation, will starve the GPU and vice-versa. Understanding
the relationship between the CPU and GPU is vital for developers
who want to efficiently utilize the GPU. Timeline charts capture the
amount of time a processing unit is busy. A timeline chart in the
most basic form is a binary chart that indicates activity on a pro-
cessing unit over time. This presentation discusses the state-of-the
art approaches for capturing timeline and then discusses a differ-
ent approach that moves both capture and visualization to the target
device.

2 Exposition

For performance analysis of applications running on embedded
GPUs, the most vital piece of information to find out is how loaded
the GPU is over a period of time. As discussed above, this is cap-
tured by a timeline chart for each processing unit in the GPU.

The latest approaches for capturing timeline information from a tar-
get are discussed. The current suite of GPU performance analysis
tools that run on desktops provide an integrated solution for pro-
filing the complete system that includes both the CPU and GPU.
We then discuss how some of the GPU timeline information can
be directly captured and displayed on the target device. Hardware
counters that describe the load on different parts of the GPU can
also be acquired along with the timeline information. This provides

∗e-mail:karthik.hariharakrishnan@arm.com

very useful first level information for quickly identifying the bottle-
neck and load on the GPU’s processing units.

The technique has been demostrated as an application developed in
AndroidTM. The Android application uses a service to communicate
with the GPU device driver and retrieve the timeline information for
the application that is being profiled. Once the profiling stops, the
acquired timeline information is displayed on the target device.

Figure 1: Snapshot of Android application

3 Elaboration

The acquisition of timeline data from the GPU consists of the fol-
lowing steps. The first step is to establish a way to retrieve hardware
information from the GPU device driver(across the user-kernel in-
terface). This can be done by the addition of necessary ‘ioctl’ (in-
put/output control) calls. These ioctls are used to start/stop the pro-
filing and to retrieve the profiling data. All of this is written using
the Android NDK. The collected data is then plotted as a line chart
showing the activity on the different cores in the GPU. The acquired
hardware counters are also displayed to give more insight into the
bottleneck. Another interesting use-case of such a technique, would
be to use the GPU hardware information to take a different software
path, thereby making a closed-loop software system with hardware
performance feedback.

4 Conclusion

This presentation discussed a different approach for performance
analysis where the acquisition and display of data was done on the
target. A technique for this approach was developed in Android to
profile 3D applications running on the same device.

http://doi.acm.org/10.1145/1111111.2222222
http://portal.acm.org/ft_gateway.cfm?id=2222222&type=pdf

